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Abstract

Ab initio total energy calculations at the DFT-GGA level for PIPD are reported. Both the monoclinic crystal with a bi-directional

hydrogen-bond network and the triclinic crystal with a sheet-like network are studied. It is concluded that the latter is the more plausible

microstructure for the fibre based on the following: (i) After optimisation of the lattice parameters and atomic positions it has a lower energy.

(ii) The calculated internal shear modulus agrees better with experiment. (iii) The minimal shear stiffness constant, which is interpreted as the

upper limit on the compressive strength, compares favourably with the experimental compressive strength.

The hydrogen bonding network plays a crucial—but indirect—role in explaining the high compressive strength. It replaces the weak

components of the lateral bonding, such as present in many high performance polymer materials with low compressive strength, e.g. PBO

and PBZT, with much stronger hydrogen bonds. This makes that in PIPD the relatively strong p–p interaction has the weakest resistance

against shear.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

High performance polymer fibres form an important

class of materials with excellent mechanical properties. The

new member of this family, the recently developed [1] rigid-

rod polymer poly(pyridobisimidazole) (PIPD), shows

excellent tensile and compressive properties [2]. The tensile

properties of PIPD, modulus of approximately 300 GPa

and strength of 4.5 GPa, are comparable with that of its

predecessors PBO and PBZT. The chemical structure of

PIPD is shown in Fig. 1.

The essential difference between PIPD and its prede-

cessors is the intermolecular hydrogen bonding network.

This network is believed to lead to a higher torsion modulus

and to improved compressive properties. Indeed, the

compressive strength of PIPD is 1.7 GPa [2], whereas that

of its predecessors is about 0.2–0.4 GPa [3].
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Using diffraction studies, the topology of the hydrogen

bonding network was studied by Klop et al. [4], and recently

by Takahashi [5,6]. Based on analysis of their experimental

data, Klop et al. concluded that their X-ray diffraction

(XDR) patterns allowed for two different hydrogen bonding

networks, hence two possible polymer crystal structures: A

monoclinic crystal containing a bi-directional hydrogen

bonding network and a triclinic crystal, wherein the

hydrogen bonding network forms a sheet-like structure.

Both structures are schematically depicted in Fig. 2. Based

on the temperature dependence of the XRD patterns Klop et

al. concluded that the bi-directional hydrogen bonding

network was the most plausible.

In his X-ray diffraction study Takahashi [6] concluded

that the intramolecular hydrogen bonds in PIPD are formed

between NH and O, instead of between N and OH, as

reported by Klop et al. [4] According to Takahashi the

hydroxyl groups are rotated by (approximately) 1808

compared to the conformation reported in Ref. [4]. Clearly

the different hydroxyl group conformation would not only

affect the intramolecular hydrogen bonds, but it would also

alter the intermolecular hydrogen bonds. In Takahashi’s
Polymer 46 (2005) 9144–9154
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Fig. 1. The chemical structure of PIPD. The two OH groups of the

dihydroxyphenylene moiety (left) and the two H atoms connected to

nitrogens in the diimidazopyridinylene moiety (right) can participate in

inter-molecular hydrogen bonds.

1 In a previous paper [8] the atomic positions were optimised at fixed

lattice parameters.
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study the conformation of the hydroxyl groups was derived

from neutron diffraction data reported in an earlier study by

the same author [5]. In the latter paper the determination of

the conformation of the hydroxyl groups was based solely

on equatorial neutron diffraction data, and not on the full 2D

neutron diffraction pattern. The parameter-data ratio was

unfavourable and the standard deviation in the internal

rotation angles of the hydroxyl groups ranged from 85 to

1968. In view of these large standard deviations the hydroxyl

group conformation and the associated hydrogen bonding

scheme as proposed by Takahashi [5,6] is questionable.

Moreover, there is strong XRD and spectroscopic evidence

that hydroxyl groups in the hydroxyphenylbenzothiazolyl

unit (which is similar to the hydroxyphenylpyridobisimida-

zole unit in PIPD) form intramolecular hydrogen bonds

between N and OH [7].

Takahashi’s model of the PIPD crystal structure not only

differs in the conformation of the hydroxyl groups since he

also proposes a different disorder model. Positional disorder

in PIPD was already proposed by Klop et al., as these

authors reported that the pyridine N and –CH may be

interchanged going from one repeat unit to the next [Ref.

[4], p. 5991]. However, this type of disorder does not alter

the hydrogen bonding scheme, since the pyridine N cannot

act as hydrogen bond acceptor due to the axial shifting of the

polymer molecules. The two crystal structures proposed by

Klop et al. are supported by ab initio calculations [8]. These

calculations indicate that both the monoclinic crystal and

the triclinic crystal may co-exist in the fibre since their

energy difference turned out to be very small. In the present

paper we address the question whether the two different

structures would lead to different torsion moduli and

compressive strengths. And if so, what structure would

explain the experimental properties of the fibre, that is a

torsion modulus of 7.4 GPa and a compressive strength of

1.7 GPa [2]. Answers to these questions might elucidate

what structural model would be appropriate to describe the

PIPD fibres and why the hydrogen bonding network is

crucial.

The determination of the torsion modulus and compres-

sive strength from ab initio total energy calculations is

performed in three steps. First, equilibrium structures are
found by optimisation of both lattice parameters and atomic

positions1. Then, several stiffness constants for the crystal

structures are determined by applying small deformations to

the equilibrium structures. Finally, these elastic constants

are used to determine the internal shear modulus of perfectly

oriented fibres containing these crystals, as well as the

compressive strength using the model of DeTeresa et al. [9].
2. Computational details

The results presented in this paper were obtained with the

ab initio total energy and molecular dynamics program

VASP (Vienna ab initio simulation package) [10–13].

The behaviour of the electrons is described with density

functional theory (DFT). The generalised gradient approxi-

mation (GGA) of Perdew and Wang [14] (PW) is used in

order to treat the hydrogen bonds appropriately.

The atomic cores are described with ultrasoft Vanderbilt

pseudopotentials [15,16]. A plane wave basis set including

waves with a kinetic energy up to 38 Ry is used. The crystal

structure is described by applying periodic boundary

conditions on the unit cell. The Brillouin zone integrals

are calculated as a summation over 8 k-points.

The volume of the unit cell is fixed to the XRD value [4]

of 499 Å3 during optimisation, since it is known that DFT-

GGA would overestimate the volume due to lack of

attractive dispersive forces [17]. An attempt of relaxing

the volume demonstrated that the problem occurs here also.

The volume turned out to be more than 20% larger than the

experimental volume.

The stiffness constants are calculated from the total

energy change upon imposing small, volume conserving

deformations. Only those deformations that give rise to a

negligible contribution of the dispersive interactions to the

total energy change will yield reliable stiffness constants.

The only stiffness constants considered are for shearing

along the z-axis, i.e. the molecular chain axis. For the

deformations pertaining to these shears, the dominant

interchain interactions are the hydrogen bonds and the

interactions between the p-systems. The dispersive (van der

Waals) interactions can be neglected.
3. Crystal structure optimisation

From XRD studies [4] the monoclinic structure with the

bi-directional hydrogen bonding network seems to be the

more plausible. Previous ab initio calculations [8] indicated

that of the two experimental structures the triclinic structure

would be energetically favourable (about 5 meV for the

Perdew–Wang GGA), however, we did not allow for
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Fig. 2. Monoclinic (left) and triclinic (right) structures, viewed along the molecular axis. Hydrogen bonds are indicated as dashed lines.

2 It should be noted that Ckl is not a tensor and cannot be used in a tensor

transformation. In order to perform a transformation the elastic matrix Ckl

has to be rewritten as a tensor of the rank 4.
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changes in the crystal structure—i.e. we fixed the lattice

parameters. In this work we allow the lattice parameters to

change during optimisation at fixed volume.

As starting point we chose the experimentally more

plausible monoclinic unit cell containing two monomers.

The XRD determined lattice parameters were used (aZ
12.60 Å, bZ3.48 Å, cZ12.01 Å, aZ908, bZ108.68 and

gZ908). All atomic positions were relaxed and the energy

of this unit cell is taken as reference, i.e. zero point of

energy. This crystal is referred to as the XRD crystal.

Next, both the unit cell as well as the atomic positions

were optimised under the constraint that the monoclinic

symmetry was conserved. This led to a unit cell with the

parameters aZ11.80 Å, bZ3.63 Å, cZ12.07 Å, aZ908,

bZ105.38 and gZ908. The resulting hydrogen bonding

network was bi-directional like in the XRD crystal. The

resulting energy was K219 meV.

A second optimisation was started from an experimental

unit cell that was deformed in such a way that the angle a

was no longer 908. After optimisation the lattice parameters

were aZ11.75 Å, bZ3.79 Å, cZ12.09 Å, aZ105.08, bZ
103.48 and gZ77.28. During this optimisation the bi-

directional hydrogen bonding network transformed to the

sheet-like form in the triclinic unit cell as was proposed by

Klop et al. [4] and was found previously [8]. The energy of

this structure is K431 meV.

The energy difference between the monoclinic and

triclinic structure is 212 meV, where the triclinic is the

lowest in energy. This is in qualitative agreement with our

previous results [8], but the difference is larger due to the

lattice relaxation.

Why the triclinic crystal is more stable than the mono-

clinic crystal cannot be understood from a simple model.

Many interactions are in competition: The chains prefer to

be flat, where the bi-directional hydrogen network causes a

torque leading to torsion. The p-systems prefer to be not

exactly on top of each other (as we will see in Section 6),

which can be solved by either a shift of the chains (triclinic

crystal) or perhaps a rotation of the p-systems (monoclinic

crystal). And also steric hindrance might play a role.

In Fig. 3 the XRD patterns resulting from the crystal

structures described above are compared with the experi-

mental pattern. The XRD patterns are calculated with the

Cerius2 software (version 4.2) from Molecular Simulations
as done previously by Klop et al. [4]. As expected, the

calculated pattern of the XRD crystal has the best overall

agreement with the experimental pattern. However, the

wide-angle meridian reflections are better described by the

triclinic structure than by the two monoclinic crystals. This

is due to the fact that the angle a is not restricted to be 908.

On the other hand the two monoclinic structures describe

the off meridian reflections at small angles better. This is a

result of the fact that the ab projection of the unit cell is

better described in the monoclinic crystals. On basis of the

XRD patterns of Fig. 3 it is not possible to discriminate

between the two ab initio calculated structures.

In summary, an energy difference between the two ab initio

determined crystals exists and is substantial (45 K/atom on a

temperature scale). Based on this result it is more likely that

the triclinic crystal will be found in the fibres. Comparison

of the XRD patterns does not show a clear preference. Since

temperature dependent XRD measurements suggested that

the monoclinic crystal is in favour, both structures are

considered possibly relevant in the following part.
4. Shear stiffness of the crystals

The elastic tensor is defined as the relationship between

the stress tensor sk and the strain tensor 3l for small strains

[18]:

sk Z
X
k;l

Ckl3l (1)

where the Voigt notation Ckl is adopted, the labels run from

1 to 6.2

In the harmonic approximation the energy of a unit cell

can be written as

Eð3ÞZ
1

2
V
X
k;l

Ckl3k3l (2)

where V is the volume of the unit cell at equilibrium and the

energy of the unit cell at equilibrium is taken to be zero.

This energy expression can be used to calculate the elastic



Fig. 3. Comparison of the XRD patterns for the different crystal structures: (a) The experimental XRD pattern, (b) the calculated pattern for the proposed

monoclinic crystal by Klop et al. [4] (the XRD crystal), (c) the ab initio optimised monoclinic crystal and (d) the ab initio optimised triclinic crystal. The

crystallite size, orientation and temperature are chosen to match the experimental pattern. As a visual aid a caricature of the experimental pattern is given by the

solid lines.

Fig. 4. The energy per unit cell of the monoclinic crystal as function of the

size of the strain. The open circles are the data for 34 and the full circles for

35. The lines are the least-square fits of a quadratic function for 34 (dashed

line) and 35 (solid line).
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constants by applying small specific strains to the

equilibrium structure and calculating the total energy

change.

A strain 3 is applied to the crystal by deforming the

primitive vectors (ak) according to

a0k Z ð1C ½3�Þak (3)

where [3] is the strain tensor in matrix notation [18]:

31
1

2
36

1

2
35

1

2
36 32

1

2
34

1

2
35

1

2
34 33

2
6666666664

3
7777777775

(4)

In particular, if the strain 3lZd is applied—and all others

are zero—the energy expression takes a simple form:

EZ
1

2
VClld

2 (5)

We calculate the total energy as a function of strain for

several values of d. For each d the cell dimensions are fixed

but all atomic positions are relaxed. From a least-squares fit

of a quadratic function to the resulting data points the elastic

constant Cll is obtained. All data points were taken to have

a weight one. The standard deviation is taken as the measure

for the uncertainty in the fit parameter.
This technique is often applied for simple inorganic

compounds, where the elastic constants are usually

considerably larger and typical values of d are very small

(d!0.01). In the present calculation, however, the energy

differences are very small (the energies in Figs. 4–6 pertain

to a 54 atoms cell) and we needed to allow larger

displacements to reduce numerical noise. We took care to

remain in the harmonic régime and checked with both

positive and negative displacements and allowed for a total

of seven data points.

For the monoclinic crystal the energy as function of 34



Fig. 5. The energy per unit cell of the triclinic crystal as function of the size

of the strain. The open circles are the data for 34 and the full circles for 35.

The lines are the least-square fits of a quadratic function for 34 (dashed line)

and 35 (solid line).
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and 35 is shown in Fig. 4. The anisotropy of the elasticity is

clearly seen and the two elastic constants are C44Z0.690G
0.006 GPa and C55Z9.65G0.62 GPa. The crystal deviates

significantly from Hookean elasticity in case of 35, leading

to a relatively large uncertainty in the elastic constant. If a

third order term is included in order to account for the

anharmonicity, then the elastic constant is C55Z9.65G
0.14 GPa.

For the triclinic crystal the energy curves are shown in

Fig. 5. The resulting elastic constants are C44Z3.57G
0.06 GPa and C55Z11.82G0.17 GPa. Again anisotropy can

be observed. The deviations from Hookean elasticity are

much smaller in this case.

Since only 8 k-points are used it is checked what the

effect is upon doubling of the number of k-points per

direction. The largest change in energy difference between

configurations was smaller than 0.2 meV. An error in the

energy of 0.2 meV at dZ0.02 would lead to a change in the

elastic constant of 0.32 GPa (from Eq. (5)). This is a

measure of the accuracies that are obtained.
Fig. 6. The energy per unit cell of the triclinic crystal as function of the size

of the strains 34 and 35 simultaneously. The full circles are the ab initio data.

The solid line is the quadratic fit and the dashed line is the energy that stems

from C44 and C55.
In order to make a fair comparison between the elastic

constants of the crystal it is important to realize that due to

the anisotropy the shear stiffness constants depend on the

orientation around the chain axis (which we place along the

z-axis). This orientation can be characterised by an angle q.

The shear stiffness constants then take the form

C44ðqÞZC44ð0Þcos
2qCC55ð0Þsin

2q

C2C45ð0Þcos q sin q (6)

C55ðqÞZC55ð0Þcos
2qCC44ð0Þsin

2q

K2C45ð0Þcos q sin q (7)

and

C45ðqÞZC45ð0Þðcos
2qKsin2qÞC ðC55

KC44Þcos q sin q (8)

To compare the two crystals fairly we should compare

the maximum and minimum values for the shear stiffness

constants:

CGZ
C44 CC55

2
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC44KC55Þ

2

4
CC2

45

r
(9)

Evaluation of Eq. (9) requires C45. In order to calculate C45

the strains 34Zd and 35Zd are applied simultaneously. This

leads to an energy expression:

EZ
1

2
VðC44 CC55 C2C45Þd

2 (10)

Calculating the energy as function of d then gives C45.

For the monoclinic crystal C45 should be formally zero

[18]. Using the above procedure leads to C45ZK0.20G
0.29 GPa, which is indeed zero within the limits of

accuracy. This result is a validation of the procedure. The

minimal stiffness constant is thus CKZC44Z0.69 GPa,

whereas the maximal is CCZC55Z9.65 GPa.

For the triclinic crystal the energy dependence is plotted

in Fig. 6. The elastic constant is calculated to be C45Z
3.74 GPa. The minimum and maximum shear stiffness

constants can be calculated, for the triclinic case, to be

CKZ2.13 GPa and CCZ13.26 GPa. These values are

significantly different from C44 and C55.

Comparison of the stiffness constants for the triclinic

structure and the monoclinic structure shows a significant

difference. The triclinic structure has the larger constants,

both minimal and maximal. The minimal stiffness constant

of the triclinic structure is a factor three larger than that of

the monoclinic structure. The maximal constants differ

about 30%.
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5. Fiber properties

In this section the calculated shear moduli of the triclinic

crystal (sheet-like hydrogen bonding network) and the

monoclinic crystal (bi-directional hydrogen bonding net-

work) are compared with the experimental data on the PIPD

fibre by Lammers et al. [2]. First, the results are compared

with the experimental data on the shear modulus. Second,

the results are used to estimate the compressive strength and

this is compared with the experimental result.
5.1. Internal shear modulus

Lammers et al. [2] have determined the experimental

value of the shear modulus and the elastic modulus of the

crystallites in the following way: For fibres of different

orientation they have measured the elastic modulus of the

fibre (E) in a tensile test and, using XRD, have determined

the second moment of the orientation of the filaments with

respect to the fibre axis (hsin2fi). The linear relation

between the fibre modulus and the orientation is given by

Ref. [19]:

1

E
Z

1

ec
C

hsin2fi

2g
(11)

where ec is the elastic modulus of the crystallites and g the

internal shear modulus, for which it is assumed that the

crystallites possess fibre symmetry, i.e. they are isotropic

perpendicular to the fibre axis. Using this relationship the

two moduli ec and g are obtained.

Because fibre symmetry is assumed only one modulus (g)

is sufficient to characterise the behaviour under shear.

Moreover, g can be directly related to the stiffness (C) and

the compliance (S) matrix:

gZCf
44 ZCf

55 Z
1

Sf44
Z

1

Sf55
(12)

Here the superscript f denotes fibre symmetry.

The monoclinic and triclinic crystals do not possess fibre

symmetry. To allow for a comparison of the calculated shear

stiffness with the measured shear modulus g, a fibre-

symmetric crystallite is constructed by assuming that, in

turn, it consists of many crystallites with the real crystal

properties. It is assumed that: (a) All crystallites have their

chain axis and the fibre axis coincide (fZ0) and (b) all

orientations (q) around the chain axis are equally present.

For such a perfectly oriented crystallite with random lateral

texture the internal shear modulus g equals the torsion

modulus. It is appropriate to refer to g as the internal shear

modulus as it is actually a property of the crystallite.

Averaging over all orientations q of the crystallites gives

the internal shear modulus

gZCf
44 ZCf

55 Z
C44 CC55

2
(13)
where C44 and C55 now pertain to the real crystal properties

and

Cf
45 Z 0 (14)

as it should be according to fibre symmetry.

Since the internal shear modulus as determined by

Lammers et al. corresponds to the average of the shear

moduli of the crystals, the calculated moduli can easily be

compared with the experimental data. For a fibre consisting

of crystallites with a bi-directional hydrogen bonding

network, the monoclinic shear moduli predict an internal

shear modulus g of 5.17 GPa. For a fibre consisting of

crystallites with sheet-like hydrogen bonding networks, the

triclinic shear moduli predict an internal shear modulus of

7.70 GPa.

The calculated shear moduli are both of the same order of

magnitude as the experimental value of 7.4G0.9 GPa. The

triclinic structure agrees quantitatively with this experiment,

whereas the modulus of the monoclinic structure is too low.

This makes the triclinic structure more probable.

It should be noted that from ultrasonic velocity

measurements [20] on a PIPD/epoxy composite the shear

modulus of the fibre was calculated to be 5.2G0.7 GPa,

which coincides with the calculated value of the monoclinic

structure. However, this is the shear modulus of a fibre with

an elastic modulus C33 of 285 GPa and not of the crystallite,

which has an elastic modulus Cc
33 over 500 GPa [2].
5.2. Compressive strength

DeTeresa et al. [9] have argued that compressive failure

of extended chain polymers is due to an elastic buckling

instability, analogous to the Euler buckling of an elastic rod

[21]. DeTeresa et al. modeled a polymer fibre as a collection

of polymer chains forming a tetragonal lattice supported by

an elastic foundation. The foundation was used to introduce

the effect of interchain interaction. It was shown that the

instability occurred when the stress exceeded the value of

the relevant shear modulus, in their model the torsion

modulus g.

Indeed, in experiment a linear relationship is found

between the torsion modulus and the compressive strength.

However, the torsion modulus overestimated the compres-

sive strength with a factor of three for PPTA [9].

DeTeresa et al. have used a tetragonal lattice and thus the

following relationship holds [18]:

gZC44 ZC55 (15)

Although this is also true in the case of fibre symmetry,

this is not true for the crystals that constitute the fibre. Since

the fibre fails when the constituting crystallites fail, it is the

compressive strength of the crystals that determines the

compressive strength of the fibre. This was realized by

Lacks [22]. He showed with molecular mechanics simu-

lations that for orthorhombic PPTA the instability occurs in



Fig. 7. Schematic representation of the next-nearest neighbour model. The

lateral directions of the crystals is drawn and the different force constants

between the chains are distinguished.
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the direction with lowest shear modulus and that this

modulus gives the threshold value for the elastic buckling

instability. The calculated threshold [22] (0.34 GPa) agrees

with the experimental compressive strength (0.3–0.4 GPa)

[3].

In order to extract useful information from the calculated

shear stiffnesses of PIPD from the model by DeTeresa et al.

it needs to be generalised to arbitrarily low-symmetry (i.e.

monoclinic and triclinic). Starting point is the energy

change upon applying a general shear (Eq. (A34) in

DeTeresa et al.) in which—at variance with DeTeresa et

al.—we now assume a completely general deformation:

EZ
1

2

X
l

ð
V

sl3ldV (16)

Using Eq. (1) this gives:

Eð3ÞZ
1

2

X
l;k

ð
V

Ckl3k3ldV (17)

which is the continuum generalisation of Eq. (2). Following

Lacks, we search for a plane in which the resistance against

buckling is minimal. The coordinate system is rotated until a

minimal Cll is found. We then only consider the specific

shear stress 3l and thus retrieve DeTeresa’s model so that

Cll gives the compressive strength. In doing so, cross terms

Ckl, i.e. buckling patterns that cannot be confined to a plane,

have been neglected and, therefore, an upper bound on the

compressive strength is found. Moreover, as an additional

simplification, only rotations around the chain axis are

considered. Again, this means that an upper bound is

obtained. However, for PIPD it is not likely that other

rotations will provide possibilities for an easier shear

deformation: Any shear in a plane tilted away from the

molecular chain axis will incur a non-zero tensile load on

the molecular chains themselves, and it is known—because

of the high Young’s modulus—that such deformations are

energetically very unfavourable.

According to the above generalisation, the upper limits to

the compressive strength are just the minimal shear

stiffnesses CK that were obtained in Section 4. For a

sheet-like network structure this implies an upper limit on

the compressive strength of 2.1 GPa and for the bi-

directional network 0.7 GPa. The number for the sheet-

like, triclinic structure compares favourably with the

experimental value of 1.7 GPa, whereas the upper limit

for the bi-directional network is much too low.

The main advantage of the model by DeTeresa et al. is

that it provides a simple physical mechanism that allows for

predictions on the strength of a polymer fibre directly from

microscopic properties of the polymer crystal. It is based on

several assumptions, as it models the geometric (buckling)

instability of one polymer chain immersed in an essentially

isotropic environment of neighbor chains. The geometric

instability is of elastic origin. It is assumed that this
instability, practically concurring with larger deformations,

starts-off irreversible damage, leading to fibre failure. The

orientation dependence of the shear interaction (i.e. non-

isotropic surrounding) has been dealt with for the main part

with the above generalisation inspired by Lacks. However,

we still have to assume the neglect of edge-effects (polymer

chains at the outside of the crystal experience a different

shear) and assume perfect crystalline order within the

crystallite, i.e. no defects (misalignments, etc). These may

result in local stress accumulation and eventually in fibre

failure. Another drawback of the model is that it disregards

the disorientation as described by the orientation distri-

bution of the crystallites (on which Eq. (11) is based). A

combination of the fibre model of Northolt et al. [19,23,24]

with the failure mechanism from DeTeresa’s model is

expected to provide a more realistic description of the

yielding behaviour of PIPD fibres. As a final note we like to

point out that all assumptions made and effects neglected

consistently point to an underestimation of the true

compressive strength, i.e. the model is expected to provide

an upper limit on the compressive strength.
6. Interchain interactions

In order to get an impression of the interchain bonding in

the crystal the present results are mapped onto a model

containing nearest neighbour and next-nearest neighbour

bonds. Fig. 7 shows a schematic picture of the crystals in the

lateral direction as well as the force constants used in the

model. The energy is assumed to depend on the shift of

the chains with respect to each other and is written as

EZ
1

2
K1ðDs

2
1 CDs24ÞC

1

2
K2ðDs

2
2 CDs25Þ

C
1

2
K3ðDs

2
3 CDs26Þ (18)

where Dsi is the shift out of equilibrium of chain i with
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respect to the central chain at a given strain. Applying a

shear strain to the crystal, the shifts of the chains are

calculated. Then the force constants can be chosen to

reproduce the ab initio calculated shear stiffness constants,

using Eqs. (5) and (10). The calculated force constants

depend little on the applied strain (1% for a change of 5%

strain) and the limit for the strain to zero is taken.

For the bi-directional hydrogen bonding network the

elastic constants are C44Z0.69 GPa, C55Z9.65 GPa

and C45Z0 GPa. This leads to force constants

K1ZK0.035 eV/Å2 and K2ZK3Z0.232 eV/Å2. The two

diagonals are equivalent as required from symmetry. The

fact that K1 is negative supports the idea that the nearest

neighbour chains (i.e. the chains differing a vector b) prefer

to be shifted. The interchain bonding along the diagonals of

the unit cell is large enough to ensure that the total energy

rises upon increasing the strain 34. In other words the next-

nearest neighbour bonding stabilises the crystal under shear.

For the sheet-like network (triclinic structure) the elastic

constants are C44Z3.57 GPa, C55Z11.82 GPa and C45Z
3.74 GPa. The force constants are K1Z0.159 eV/Å2, K2Z
0.417 eV/Å2 and K3Z0.163 eV/Å2. The diagonals are

clearly inequivalent and the higher force constant corre-

sponds with the diagonal along the hydrogen bonding

network. In the triclinic crystal the nearest neighbour chains

are shifted (since aZ1058) and this coincides with a

positive value of K1. Again, supporting the idea that the

chains prefer not to be exactly on top of each other.

It is noteworthy that the average of K2 and K3 is

0.29 eV/Å2, which is 25% higher than K2 in the bi-

directional hydrogen bonding network. This means that

the average next-nearest neighbour bonding is stronger in

the sheet-like structure. This may indicate that the hydrogen

bonds are stronger in this case.

More insight in the role of the nearest and next-nearest

neighbour interaction can be obtained by altering the force

constants and studying the effect on the internal shear

modulus and compressive strength (in fact the upper limit

given by the minimal shear stiffness constant).

First the nearest neighbour force constant is altered while

fixing the force constants K2 and K3. In Fig. 8 the resulting
Fig. 8. The internal shear modulus and compressive strength as a function of the n

and the triclinic crystal (dashed line). The full circle represents the monoclinic crys

circle the triclinic crystal.
internal shear modulus and compressive strength are shown

as function of K1 for both the triclinic and the monoclinic

crystal. It can be clearly seen that the compressive strength

at a given K1 is nearly the same for both crystals. This

indicates that nearest neighbour bonding dominates the

compressive strength. Also the internal shear modulus

depends on K1 and varies approximately 1 GPa in the

plotted range. The difference between the internal shear

modulus of the monoclinic crystal and triclinic crystal at a

given K1 is nearly constant (1.6 GPa). Hence, the difference

in internal shear modulus (7.7K5.2Z2.5 GPa) is caused for

36% (0.9 GPa) by the nearest neighbour interaction, a

significant contribution.

The variation of the internal shear modulus and

compressive strength upon change of the next-nearest

neighbour bonding is plotted in Fig. 9. The solid lines

represent the results for the monoclinic structure. The

internal shear modulus is strongly dependent on the next-

nearest neighbour bonding. Changing K2ZK3 from 0 to

0.5 eV/Å2 results in a change of internal shear modulus of

12 GPa. Note, that for nearly zero force constants the

internal shear modulus vanishes and hence the crystal

becomes instable. Actually, in the compressive strength plot

it can be seen that the crystal is instable until the force

constant K2 exceeds 0.07 eV/Å2. This is caused by the

negative force constant K1, which has to be compensated.

This critical force constant is more than a factor of three

lower than the force constant in the monoclinic crystal

(0.232 eV/Å2) and hence the interchain bonding stabilises

the crystal more than sufficiently under shear.

If the force constant K2 in the monoclinic crystal would

take the value of the average of the force constants K2 and

K3 in the triclinic crystal, a compressive strength of

0.94 GPa would be reached, 1.2 GPa lower than the

compressive strength of the triclinic crystal. This difference

is caused by the difference in nearest neighbour bonding

(K1).

Also for the triclinic case the internal shear modulus and

compressive strength are calculated for varying K2. In Fig. 9

the results are shown for three fixed values of K3: The true

value 0.163 eV/Å2, the value of the monoclinic crystal
earest neighbour force constant for both the monoclinic crystal (solid line)

tal according to the force constants from the ab initio calculations, the open



Fig. 9. The internal shear modulus and compressive strength as a function of the next-nearest neighbour force constant K2. For the monoclinic crystal (solid

line)K3 is equal to K2. For the triclinic crystal (dashed lines)K3 is fixed on three values: 0.000, 0.163 and 0.232 eV/Å
2. The full circle represents the monoclinic

crystal according to the force constants from the ab initio calculations, the open circle the triclinic crystal.

J.C.L. Hageman et al. / Polymer 46 (2005) 9144–91549152
0.232 eV/Å2 and for K3Z0. The slopes for the three

different cases are the same. Hence, the change in the

internal shear modulus does not depend on K3, only the

initial value of the internal shear modulus does. The slope of

the curves is nearly a factor of two smaller than in the

monoclinic crystal, which is a consequence of the fact that

for the triclinic crystal only K2 is varied and K3 is not. At

K2ZK3Z0.232 eV/Å2, the monoclinic values, the internal

shear modulus is 6.1 GPa, approximately 1 GPa higher than

for the monoclinic crystal, which can be accounted for by

the negative nearest neighbour bonding (in the latter).

The compressive strength of the triclinic structure is not

linear in K2. This result stems from the facts that it is equal

to the minimal shear stiffness constant and that C45s0. The

shape of the curve is easily understood for the case that K3Z
0 [Remember, K1s0]. If K2 is zero, then the planes formed

by the chains 1 and 4 and the chains 5 and 6 can slide past

each other without increase of energy. Then the crystal is

not stable and the compressive strength is zero. For small K2

the compressive strength will increase linearly. For large K2,

that is much larger than K1, the highest stiffness will be

found between the planes formed by the chains 1 and 2 and

the chains 3 and 6. Increasing K2 leads to a higher shear

stiffness constant for these planes. The lowest shear stiffness

constant will be for the other diagonal and it will be K1 that

determines the lowest shear stiffness constant and hence (the

upper limit to) the compressive strength. The compressive

strength will be constant upon increasing K2. A cross over

between the two regions can be found around K2Z
0.1 eV/Å2.

Increasing K3 to 0.163 eV/Å2 doubles the limiting

compressive strength, since the bonding perpendicular to

the plane formed by the chains 2 and 5 is increased. For

K2Z0 and K3OK1 the lowest shear stiffness constant is

again determined by K1 analogous to the case that K3Z0

and K2OK1. This explains the fact that for both K3Z
0.163 eV/Å2 and K3Z0.232 eV/Å2 the compressive

strength is the same for K2Z0.

Since K2 is relatively strong for the triclinic crystal due to

the hydrogen bonding, the compressive strength is in the

nearly constant region and will hardly depend on the
strength of the hydrogen bonding network. It will depend on

the other interchain bonding force constants K1 and K3.

These are sufficiently strong to ensure a compressive

strength of 2.1 GPa.

Before going to the conclusions some remarks should be

made. This section correlates the calculated shear moduli

with interchain bonding. Since bonding is the net

interaction, all different interactions may participate in the

force constants. This makes it hard to correlate the shear

moduli to the hydrogen bonding network. In some cases the

correlation can be found; in the triclinic crystal the

compressive strength is determined by the force constants

K1 and K3, which are not in the direction of the hydrogen

bonding network. For this reason the network can not

participate (directly) in these force constants and hence does

not determine (directly) the compressive strength of the

triclinic crystal.

The above interpretation should be taken with care, since

there may well be an indirect influence of the hydrogen

bonding network. For example, in the monoclinic crystal it

is the network that stabilises the crystal structure under

shear forces. Without the network the chains would shift

until the negative nearest neighbour bonding would be

positive. In this sense, the network has an indirect influence

on all the force constants and hence on the low compressive

strength of the monoclinic crystal. Also in the triclinic

crystal there may be an indirect influence on the

compressive strength, but this is not studied in this section.

In summary, the projection onto the next-nearest

neighbour model has shown that not only the hydrogen

bonding networks are of importance in the mechanical

properties of PIPD. The internal shear modulus and

compressive strength are also influenced by those nearest

neighbour bindings and next-nearest neighbour bondings

that are not due to the network.
7. Discussion and conclusions

In this paper we have presented shear stiffness constants

calculated with DFT of two possible crystal structures of
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PIPD: The monoclinic crystal with a bi-directional

hydrogen bonding network and the triclinic crystal with a

sheet-like network. The resulting internal shear modulus

(torsion modulus) and upper limit on the compressive

strength are compared with the experimental values and are

both of the right order of magnitude for both structures. This

shows that DFT yields reliable results for these properties.

The calculated shear stiffness constants were analysed

with a next-nearest neighbour model. It is shown that the

next-nearest neighbour bonding along the direction of the

hydrogen bonds is important for the internal shear modulus.

It was previously [8] shown that the networks stabilised the

crystals and this is confirmed to be particularly true for the

stabilisation of the monoclinic crystal under shear. The

previously [8] made statement that the high compressive

strength can be attributed to the network should be put more

carefully.

The monoclinic crystal, which contains the bi-directional

hydrogen bonding network, has an internal shear modulus of

5.2 GPa and a (maximal) compressive strength of 0.7 GPa,

which can be attributed to the next-nearest neighbour

bonding along the network directions. The negative nearest

neighbour bonding causes the strength to be lower than in

the triclinic crystal. The internal shear modulus is also lower

than that in the triclinic crystal. This is partly caused by the

negative nearest neighbour bonding, but also by the lower

next-nearest neighbour bonding.

The internal shear modulus of the triclinic crystal,

containing the sheet-like network, (7.7 GPa) depends on

all next-nearest neighbour and nearest neighbour bondings.

The compressive strength of 2.1 GPa does not depend

(directly) on the next-nearest neighbour bonding in the

sheet-like direction, but is mainly determined by the

resistance against shear of the bonding between the sheets.

That all interchain interactions should be taken into

account is best illustrated by the fact that if only the

hydrogen bonding network would be of importance, one

would expect the average shear modulus of the two crystals

to be the same and the compressive strength of the

monoclinic crystal the highest. We have shown that this is

not the case: Both the average shear modulus and the

compressive strength of the triclinic crystal are significantly

higher.

In order to know whether the hydrogen bonding network

increases the compressive strength (directly) it is necessary

to know the shape of the network: Bi-directional or sheet-

like. From the ab initio calculations the following can be

concluded on the shape of the network:

1. The total energy calculations show a lower energy for

the triclinic crystal containing the sheet-like network.

Therefore, the sheet-like network is the most probable

based on the total energy calculations. The calculated

XRD patterns do not show a clear preference for one of

the two ab initio determined structures.

2. For both structures the internal shear modulus of the
fibres is calculated. The structure with the bi-directional

hydrogen bonding network has a significantly lower

modulus than the experimental fibre. The internal shear

modulus of the sheet-like structure agrees well with the

experimental modulus. Hence, based on the internal

shear modulus of the fibre, the sheet-like structure seems

to be the most probable.

3. Using the elastic instability theory with the minimal

shear modulus as relevant one, the (upper limit on the)

compressive strength for the more probable sheet-like

structure is predicted to be 2.1 GPa. The experimental

strength is only 20% lower and this seems to confirm the

elastic instability theory. The bi-directional structure is a

factor three weaker (0.7 GPa) than the sheet-like

structure.

From the total energy, the internal shear modulus and the

compressive strength, we conclude that it is likely that the

hydrogen bonding network in the PIPD fibres has the sheet-

like shape. As a consequence, it seems plausible that the

high compressive strength is not (directly) caused by the

strength of the hydrogen bonding network, but by the strong

resistance against shear of the bonding between the sheets.

The indirect influence of the hydrogen bonding network

is paramount though. This is directly evident when

comparing PIPD to a similar polymer crystal lacking any

hydrogen-bonded cross-links between the chains, like, e.g.

PBO. In one lateral direction one expects a very high

resistance against shearing: The PBO chains adjust

themselves such that a shearing of p-ring system over

p-ring system becomes very unfavourable, like in triclinic

PIPD. However, in the perpendicular lateral direction there

are no interactions of significant strength between the edges

of the ring-systems to counteract a shearing deformation.

Thus the compressive strength will be determined by this

weak interaction, and not by the resistance against shearing

of one p-system over another. Consequently it will be very

low.

In triclinic PIPD the situation is entirely different. Within

the sheets, easy shearing as in PBO is inhibited by the

hydrogen-bond network. Any other shear (that avoids to

load the hydrogen bonds) will automatically involve a shear

of ring system over ring system. Consequently this rather

strong interaction will determine the compressive strength.

While in PBO the shear of ring system over ring system is

energetically considerably more costly than other shear

deformations, in PIPD the presence of the strong hydrogen-

bonded network causes it to be the easy shear deformation

and thus the limiting factor for the compressive strength.

Somewhat paradoxically the monoclinic PIPD crystal

has a much lower compressive strength, although each

polymer chain is hydrogen-bonded to no less than four

neighbouring chains, compared to only two in the triclinic

crystal. However, here more is too much: The ring systems

are forced into a relative position that is unfavourable. They

want the chains to shift, thus counteracting the hydrogen
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bonds. This competition makes that this crystal has a lower

compressive strength. This is reflected by the negative

nearest neighbour bonding and the apparent weak next-

nearest neighbour bonding.

Temperature dependent XRD measurements [4] have

shown no splitting of the peaks that correspond to the (110)

and (1 �10) planes. This means that for thermal expansion the

two diagonals perpendicular to the chain direction are

equivalent. A monoclinic structure would explain this

immediately, but the present calculations suggest that the

sheet-like structure is more plausible.

A single crystal with sheets running parallel to the (110)

planes would show a splitting of the peaks and that is not

consistent with the XRD thermal expansion data. For that

reason some sheets have to run parallel to the (1 �10) planes,
some parallel to the (110) planes. This requires regions,

where crossings have to occur and these may resemble the

bi-directional structure. It should be noted that these

crossings are then the weaker points of the fibre under

compression.

This structure resembles the disorder model as proposed

by Klop et al. However, in that model the bi-directional

hydrogen bonding network is the basic structure and the

sheet-like structure is supposed to be a distortion, while the

reverse is proposed on the basis of the present calculations.

Moreover, in the crossing regions the monoclinic crystal

symmetry will not be fully observed. A crossing region

linking one orientation of the triclinic crystal with another

orientation is not expected to be crystalline itself. This may

offer the freedom to have the relative position of the chains

better optimised within the crossing region. Therefore, we

expect that the crossing regions will have a higher

compressive strength than the perfect monoclinic crystal.

In conclusion, although the hydrogen bonding network is

important for the properties of PIPD, it is not possible to

neglect the other interchain interactions. The DFT calcu-

lations presented here suggest that the PIPD fibres contain a

sheet-like hydrogen bonding network and that there is a

strong resistance against shearing of the planes. The

resulting internal shear modulus and maximal compressive

strength are calculated to be 7.7 and 2.1 GPa, respectively,

which is in excellent agreement with the experimental

values of 7.4 and 1.7 GPa.
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